Decomposition of Strongly Coupled Systems

Dominik Bucher, llias Garnier, Ricardo Honorato, Vincent Danos;

University of Edinburgh, ETH Zurich

27 June 2013

ulation models could benefit from decompo-

sition into modules. We are doing research
on methods that allow decomposition even for
strongly coupled systems, i.e. systems in which cer-
tain variables influence all others. Furthermore, we
analyze how to exploit a given modular decompo-
sition by developing a technique of ‘uchronic’ exe-
cution where modules interpolate late values and
can backtrack when actual values eventually reveal
substantial discrepancies.

F or analysis and execution efficiency, many sim-

1 Introduction

Many simulation models, especially in biology, benefit from
integrating different small modules into a large system. This
is partly because the complexity of the overall system is
immensely big, so that a single monolithic block would be
difficult to describe and reason about, and also because
single modules might use different modeling approaches,
like ordinary differential equations, boolean networks, flux
balance analysis and more. Of special interest are so-called
whole cell models [5], which try to describe and simulate
everything that happens within a biological cell. But also
metabolic [7], protein [3] and other networks can be modu-
larized for analysis and simulation.

Equally interesting and closely related, another approach
tries to form smaller connected systems from a large mono-
lithic block [1, 9]. Such decompositions are useful for de-
tailed analysis of components as well as for efficient simu-
lation if used in combination with other tricks. However,
performing this task manually can be cumbersome, error-
prone and time consuming. We are working on algorithms
that are able to split and modularize arbitrary systems
into smaller components which can be simulated on dif-
ferent timescales with synchronizations at optimal times.
The principles of distributing variables among modules are
formalized and analyzed.

The systems discussed are of a very general structure as
outlined in section 2. Modules are built of communicating
processes, which are to be seen as black boxes themselves.
As a more accurate analysis is possible when concrete
instances of processes are considered, we study detailed
systems of ordinary differential equations (described in
section 3). The study is done analytically and will be
complemented by benchmarking various biological models.
Section 4 talks about so-called uchronic systems which

*In alphabetical order

arise from modularization and allow processes to predict
the outputs of other processes and thus advance further
in time. As this allows easy rebalancing, it is of particular
interest in environments where computing resources are
scarce and computation load should be maximized. Section
5 concludes our current findings and further steps.

2 Modularization of Systems

The problem of splitting a large system into smaller subsys-
tems or so-called modules is of particular interest for huge
models where efficiency can be greatly increased by letting
single modules run in parallel, with synchronization rounds
at certain times. An optimal splitting takes into account
the maximization of the step sizes of different modules, an
equal average computation load for all modules and the
total number and size of modules. In a first step, we study
a general class of systems built from two basic components.
In a second step we look at interactions between those
components.

2.1 A Ubiquitous Definition of Systems

A collection of state variables called state vector and several
communicating processes form the two basic components.
We will later introduce resources which are state variables
that are shared between multiple modules.

A state variable s; € {s1,...,s,} is any modifiable object
in the simulation (e.g. a number or a string). The complete
set of state variables, also denoted as the state wvector
describes the whole simulation state (processes have no
private state in this formalization) at time ¢:

Sl(t)

s =] *" 1)

sn(t)

A communicating process P; € {P1, ..., P,} is a purely
functional entity that produces a change C' on the simula-
tion system within a time period At starting from initial
conditions S(t) at a time ¢. With S denoting the space

that resources span (e.g. R for real numbers or {0,1} for
Booleans), a process is defined as:

P:S"xRxR— S"

(S(t),t, At)) = C(S(t),t, At) (2)

A change C has the same structure as the set of resources
S(t) € S™ and describes the change the process would like

Page 1 of 4

to perform on the simulation state during ¢t + At. The
change a process calculates is the collection of all different
smaller changes that happen on the simulation state during
the execution of P.

2.2 Process Interactions

In any system variables will depend on other variables with
different strength. With the above formalism this depends
on the changes produced by the processes. The dependency
matriz J describes the coupling of variables, and is defined
for each process P;:

0Cs, 0Cs,
0s1 0sn,
J; = : : 1€1,...,p (3)
oCs, oCs,
0s1 E

Note the similarity to the Jacobian matrix. In particular,
variable s; depends on variable s; if J;; # 0. The Jacobian
can be used for the case of ordinary differential equations,
but in a general system, dependencies have to be deter-
mined in other ways, e.g. with some sensitivity analysis
tailored to the modeling technique used.

The modularization algorithm uses the dependency ma-
trix to cluster variables into - if desired, hierarchical - mod-
ules that can be simulated with maximal time steps, but
computational loads still in the same range. Often, there
are variables that influence many other variables strongly.
If the algorithm were to try to modularize without taking
such variables into account, the result would often be a
monolithic block again. Thus we adapted the algorithm to
detect these so-called resources and we are developing and
analyzing techniques to share them between modules with-
out additional communication. Those techniques revolve
around additive splitting, sharing and reintegrating and
allow to decouple a system as if no resources were existent.
An exemplary sharing technique is based on momentarily
fluxes ¢; ; (flux of process ¢ in resource j), where resources
are distributed proportional to the fluxes:

Si,j = Oéi’j - S5 with ai)j =

3 An Exemplary System of Linear
Differential Equations

This section outlines a modularization example, namely
a system of differential equations. Differential equation
systems have been studied to a great extent and they
provide a good basis for comparison and benchmarking.
We look at linear systems of the following form:

yll Fl (t7y17y27"'aym)
yé F2(t7y1ay27~--aym)
| = . (4)
y;n Fm(t7y17y2a"'7ym)

Or also just y’ = N -y in matrix form.

The system allows an easy computation of the depen-
dency matrix J by calculating the Jacobian which is then
used by the algorithm to modularize it. The modularization
algorithm uses the dependency matrices to build sensitiv-
ity and influence vectors (where sensitivity denotes the
overall sensitivity of a process to a given variable and
influence denotes how fast a variable changes as its calcu-
lation inputs change). Using these matrices clusterings are
found, either per variable or also for the whole state vector.
The clusterings denote how frequent two processes have to
communicate.

The modularization is now optimized by generating clus-
ters that have to communicate as little as possible. The op-
timization algorithm is adapted from previously researched
methods [6] and optimizes the network modularity

1
2m

Q D [Aij = Pyl 6(Mi, My)

ij

where A is calculated from J, n and m are vertices and
edges, k; is the number of edges connected to node i and

kik;
Pij = 21
2m
1 if nodes 7, j in same module
0(Mi, Mj) = { 0 else

In contrast to previously researched optimization algo-
rithms [1, 9], we are examining additional mechanisms to
handle highly coupled systems (where some variables are
tightly bound to more than one module). For some mech-
anisms our work relies on the assumption that resources
are sufficiently abundant to saturate the system so that
modules consume them at a constant rate.

In order to be able to benchmark the modularized result-
ing system, we will perform the modularization on known
systems from biology (where systems of linear ordinary dif-
ferential equations are common, e.g. in metabolic networks,
where N becomes the stoichiometry matrix) and look at
the resulting performance of the system. Performance mea-
sures include total processing time, overall simulation error
and comparison with algorithms that don’t use any special
notion for shared variables.

4 Uchronic Execution of Processes

In this section, so-called uchronic (coined from the French
uchronie) execution of processes is discussed. Starting from
a modularized system as generated above, modules are now
allowed to predict outputs of other modules in order to
let them advance faster in time. This is especially valuable
if certain processes use much less CPU time and would
thus always have to wait for others. Such processes now
take advantage of their lower CPU load to advance further
in (simulation) time. Once a certain time is reached, they
only activate to check if their predictions were within an
acceptable bounds and release CPU resources otherwise. In
case their predictions were wrong, they have to backtrack
and restart their simulation from the violating point in time.
However, as modules are only loosely coupled, predictions

Page 2 of 4

seem to be correct with high probability, an argument on
which we we will do further research.

The design and the correctness proof of this whole back-
tracking mechanism should not be the responsability of the
model designer, but should rather come as a generic layer
on top of the model. In order to achieve that, we propose a
process algebra equiped with an explicit notion of causality
and an operational mean of consistently backtracking in a
distributed way whenever some inconsistency is detected.

The next section starts with a few words on the formal-
ization of reactive processes, is followed by an introduction
of some notations related to the treatment of causality and
the presentation of our process algebra.

4.1 Semantics of reactive processes

LTSs can equivalently be presented under their more ab-
stract, coalgebraic guise. Where we had a set of states
@ and a transition relation — C @ x £ x @ for some
set of labels £, we can more abstractly reason about the
same set () equipped with a so-called observation func-
tion f : Q — L x Q. This kind of correspondence can
be systematized and generalized greatly. Given any set
function F' : Set — Set specifying the observations, an
F — coalgebra is a pair (X, f : X — F(X)), compactly
representing a transition system. For a wide class of such
set functions, there exists a so-called final coalgebra, which
happens to be the canonical set of processes with the spec-
ified signature. We won'’t insist more on this particular
subject in these lines. The interested reader can refer to
[8, 2] for more information.

We assume that we are given a notion of trace which
for any state zo € X of a deterministic coalgebraically
presented transition system produces the possibly infinite
execution sequence xg - 1 --- of states.

4.2 The partial order of causality on
activations

We use a notion of causality reminiscent of event structures
[10]. Let E be the countably infinite set of events. A partial
order on events is a tuple (E, <) where < C E x E is a
partial order relation and such that for any e € E, the set
of causes C(e) £ {c¢ < e | ¢ € F} is finite. A given total (i.e.
bijective) ordering of events w € EN is correct iff:

1. Vo <y €N, =(w, < w,), i.e. causality is respected,
2. Vy € N,Vc € C(wy), 3z < y,wy; = ¢, l.e. events are
properly justified by their causes.

Such an ordering w is partially correct iff there exists an
infinite subset of prefixes p of w for which there exists a
correct permutation. Finally, it is causal when only the first
condition is verified. These notions are trivially extended
to traces given a function from states to events.

4.3 Uchronic processes

Let us consider a particular set of reactive processes: they
can input and output data, and they act as causal stream
functions [4]. In practice, their dynamics is embedded in
real time: they sample their input at various times (possibly

in a non-periodic way), updating simultaneously and in
an instantaneous way their current output. Each process
has its own activation schedule, which might possibly be
dependent on input data and which has to be treated as
being non-deterministic.

Rather than explicitly using a jacobian-like matrix, we
model inter-process couplings by ascribing an abstract
partial order on activations, not to be mistaken with the
total order imposed by physical time. In practice, at any
activation point, a process will either activate normally or
interpolate its input data if the partial order on activations
is not satisfied (meaning intuively that some required input
data is not available). When an inconsistency is detected,
a distributed backtracking mechanism is activated.

Let A and B be respectively the sets of inputs and
outputs of a process. In order to encode distributed back-
tracking, we need to add some information on top of those
sets. In essence, a “backtrack” signal should contain enough
data for the receiving ends to go back to the last correct
consistent activation, identified as a particular event. This
defines our effective input and output sets A and B where:

X = {ok(z,e) | z € X,e € E} U {backtrack(e) | e € E}.

As can be guessed, the second component of the disjoint
union signals backtracking.

We model a process as a dynamic and stateful entity
interacting with an environment representing the rest of
the system. The environment coalgebra is (X, obs.) where
the signature of the observation function is:

obse : Xe =+ AX pfin(E) X (B+1— X.).

Each activation is labelled by all events produced dur-
ing that activation and that are necessary to justify the
provided input. The coalgebra of processes is (X, obsy),
where the second component has signature:

0bsp 1 Xp = EX (Xex Xp)* X (pfin(E) = AXE)x (A= B x Xp).

We label each activation of a process with its unique
event, a stack of states storing the past of the system for
backtracking purposes and a mapping from missing causes
to previously interpolated events. The environment acts as
a provider of inputs and a consumer of outputs, whereas
the process does the opposite. To simplify matters here,
we allow processes to produce nothing. The system evolves
by synchronously interleaving the successive unfoldings of
the process and environment coalgebras. The state space
of the system is X, x X,.

Given these informations and some other constraints, we
assert that it is possible to reason about the local causal
consistency of a process activation. In this abstract, we
restrict our attention to the case where activation events
are only justified by their past and at most one external
event. We note Justified C (X, x X,) the states where
the activation of the process component is justified.

Our aim is to provide a uchronic layer above regular
processes, for which we impose the type signature S —
(A — B x), assuming some state space S. It is thus
necessary to define X, generically in function of S. There
indeed exists a function that given ¢) a finite set of regular
processes, i7) a causal assignement of events to each process
activations, 4i4) an interpolation method interp : S — A,

Page 3 of 4

1v) some symmetric consistency relation on inputs Con C
Ax A and v) a partially correct scheduling w € EN creates a
consistent system. The semantics is defined by case analysis
on the input and is sketched below.

I. ok(a, e) case:.

1. If the activation event of the process is correctly justified
by an ok input, the process checks whether this event
justifies a previous speculative activation.

e If it is the case and the interpolated input is consistent
with the actual one according to C'on then proceed as
usual, if it is not consistent then bactrack;

e If the event does not justify a previous activation,
treat it regularly.

2. If the activation event is mot justified by the input,
meaning that the required event has not occured and that
we have to “guess” it by interpolation.

II. backtrack(e) case:

The processes computes its last state non causally
dependent on the event e and invalidates all its outputs
that are causally dependent on e.

In what follows, we give a formal account for a repre-
sentative subset of the operational semantics. A consistent
interpolation gives rise to the following rule:

obse(xe) = (ok(a,eq), evs, nexte)

obsp(zp) = (e, stack, mapping, next,)

(xe, zp) € Justified, mapping({eq}) = (a;, e;)
(a,a;) € Con, z, = next. (o)

(e, xp) — (zL, xp)

Where e is the element of the singleton set. Sending a
backtrack message is taken care of by this rule:

obs.(z.) = (ok(a,e,), evs, next,)

obsy(zp) = (e, stack, mapping, next,)

(xe, zp) € Justified, mapping({eq}) = (a;, e;)
(a,a;) € Con, z, = next.(backtrack(e;))

x;, = stack(e;)

(3367 xp) - (x/m 1‘;))
where stack(e;) denotes the unique (by assumption) previ-
ous state of the process labelled with event e;. Receiving a
backtrack message is handled in the following way:

obs.(x.) = (backtrack(e), evs, next,)
obsy(zp) = (e, stack, mapping, next,)
x,, = next.(backtrack(ep)), z;, = stack(e)

(Te,mp) — (x/evx;))

where e is the event corresponding to the most recent
(and unique) activation of the process such that e £ ey.
We omit the other rules, but they are in the same spirit.

As can be proved, the fact that this mechanism gives
rise to consistent executions relies on the assumption that
the actual scheduling imposed on the system is partially
correct, meaning that delayed events eventually happen
and that consistency is achieved. Other points of interest,
such as compositionality, are not discussed here.

5 Conclusion

We described a general method allowing to automatically
decompose hierarchically a system into communicating
processes, given some way of assessing their degree of inter-
dependence. Starting from such a decomposition, we can
go further and decouple the actual dynamics of the pro-
cesses thanks to the uchronic model of execution. Together,
these elements give the foundation for a general software
framework that promises efficiency and scalability. We are
currently prototyping such a framework.

Some areas to investigate are the automatic extraction
of jacobian-like matrices from black-box processes using
sampling, stochastic uchronic dynamics and the possible
application of machine learning techniques to smart inter-
polation.

References

[1] Michael Ederer, Thomas Sauter, Eric Bullinger, Ernst-
Dieter Gilles, and Frank Allgéwer. An approach for
dividing models of biological reaction networks into
functional units. Simulation, 79(12):703-716, 2003.

A tutorial on
EATCS Bulletin,

Bart Jacobs and Jan Rutten.
(co)algebras and (co)induction.
62:222-259, 1997.

2]

Hawoong Jeong, Sean P Mason, A-L Barabasi, and
Zoltan N Oltvai. Lethality and centrality in protein
networks. Nature, 411(6833):41-42, 2001.

Gilles Kahn. The semantics of simple language for
parallel programming. In IFIP Congress, pages 471—
475, 1974.

Jonathan R Karr, Jayodita C Sanghvi, Derek N Mack-
lin, Miriam V Gutschow, Jared M Jacobs, Benjamin
Bolival, Nacyra Assad-Garcia, John I Glass, and
Markus W Covert. A whole-cell computational model
predicts phenotype from genotype. Cell, 150(2):389-
401, 2012.

Mark EJ Newman. Modularity and community struc-
ture in networks. Proceedings of the National Academy

of Sciences, 103(23):8577-8582, 2006.

Erzsébet Ravasz, Anna Lisa Somera, Dale A Mongru,
Zoltan N Oltvai, and A-L Barabdsi. Hierarchical orga-
nization of modularity in metabolic networks. science,
297(5586):1551-1555, 2002.

J. J. M. M. Rutten. Universal coalgebra: a theory of
systems, 2000.

Julio Saez-Rodriguez, Stefan Gayer, Martin Ginkel,
and Ernst Dieter Gilles. Automatic decomposition
of kinetic models of signaling networks minimizing
the retroactivity among modules. Bioinformatics,
24(16):i213-i219, 2008.

Glynn Winskel. Event structures. In Advances in
Petri Nets, pages 325-392, 1986.

Page 4 of 4

